
Abstract

A common assumption in satellite imager-based cirrus retrieval algorithms is that the

radiative properties of a cirrus cloud may be represented by those associated with a specific

ice crystal shape (or habit) and a single particle size distribution. However, observations of

cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially

with height within the clouds. In this study we investigate the sensitivity of the top-of-

atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 grn and 2.11

Jam to the cirrus models assumed to be either a single homogeneous layer or three distinct,

but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with

respect to ice crystal habit and size distribution on the basis of in situ replicator data

acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the

fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is

employed to determine the single scattering and the bulk radiative properties of the cirrus

cloud. Regarding the radiative transfer computations, we present a discrete form of the

adding/doubling principle by introducing a direct transmission function, which is

computationaUy straightforward and efficient, an improvement over previous methods.

For the 0.65 lam band, at which absorption by ice is negligible, there is little

difference between the bidirectional reflectances calculated for the one- and three-layer

cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At

the 2.11 _tm band, the bidirectional reflectances computed for both optically thin (x = 1)

and thick (x = 10) cirrus clouds show significant differences between the results for the

one- and three-layer models. The reflectances computed for the three-layer cirrus model are

substantially larger than those computed for the single-layer cirrus. Finally, we find that

cloud reflectance is very sensitive to the optical properties of the small crystals that

predominate in the top layer of the three-layer cirrus model. It is critical to define the most

realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for

obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.
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1. Introduction

Cirrus clouds located in the upper troposphere and lower stratosphere are important

to the Earth's climate [Liou, 1986; Stephens et al., 1990]. They reflect solar radiation,

absorb the thermal emission from ground and lower atmosphere, and reemit intl"arM

radiation to space. The Moderate Resolution Imaging Spectroradiometer (MODIS) [King et

al., 1992] on the recently launched Terra spacecraft will enhance the capability for

monitoring cirrus clouds in comparison with previous generations of satellite instruments

such as the Advanced Very High Resolution Radiometer (AVHRR). MODIS has a total of

36 bands for studies of land, ocean, and the atmosphere, including the 1.38 Inn band for

cirrus detection and correction [Gao and Kaufman,1995], 0.65, 1.66, and 2.11 Ima bands

for implementing cloud microphysical and optical property retrieval techniques [King et aL,

1997], and the 8.5, 11, and 12 pan for applying infrared cloud property retrieval techniques

[Ackerman et al., 1990]. MODIS data will allow improved retrievals of cirrus optical and

microphysical parameters such as optical thickness of cirrus and mean effective size of the

ice crystals in these clouds.

Various algorithms have been developed to retrieve cirrus optical and microphysical

properties in the past twenty years [e.g., Liou et al., 1990; Ou at al., 1993; Minnis et al.,

1993a,b; Rossow and Lacis, 1990]. They can be categorized into the techniques based on

either infrared emission or solar reflection. The representative algorithm of the former is the

method developed by Inoue[1985] for determining the infrared emissivity of cirrus clouds

on the basis of the brightness temperature difference between 11 and 12 lgn wavelengths

with an assumption of implicit mean particle size. An infrared trispectral algorithm using

8.52, 11, and 12 _trn bands [Ackerman etal., 1990, 1998; Strabala etal. 1994] with a recent

improvement [Baum et al. 2000a,b] form the basis of an infrared retrieval algorithm using

MODIS infrared channels. The representative retrieval algorithm based on solar reflection is

that developed by Nakajima andKing [1990], who used a trispectral (0.75, 1.6, and 2.2 _tm)

method to simultaneously retrieve the optical thickness and mean effective particle size for
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waterclouds. This approach has been applied to the retrieval of the optical thickness and

mean particle size of ice crystals for cirrus [WieIicla" et aI., 1990].

To develop a reliable retrieval algorithm for cirrus optical and mierophysical

properties, it is critical to generate reliable pre-calculated look-up tables of bidirectional

reflectance for cirrus clouds over a practical range of effective sizes and optical thicknesses

for various solar- and view-angular geometries. At present, most algorithms for retrieving

cirrus optical thickness and effective size assume that all ice crystals in cirrus are of one

specific habit, such as spheres, hexagonal plates, hexagonal columns, or fractal polycrystals.

In addition, it is commonly assumed that a single size distribution is sufficient to determine

the scattering properties of the ice crystals within the cirrus layer. However, the observations

based on aircrat_-bome two-dimensional optical cloud probe (2D-C) and balloon-borne

replicator measurements [e.g., Heymsfield and Platt, 1984; Arnott et al., 1994; Mitchell et

aI., 1996a, b; McFarquhar andHeymsfield, 1996, 1997] have demonstrated that a significant

number of ice crystals in cirrus clouds are bullet rosettes, solid and hollow columns, plates,

and irregularly shaped aggregates. In addition, Heymsfield and colleagues have showed that

ice crystal habits and size distributions are vertically inhomogeneous in cirrus clouds.

[http://b°x'mmm'ucar" edu/science/cirrus/pr°jects/FIRE]"

Since satellite-based retrieval techniques essentially compare library computations of

bidirectional reflectances to actual measurements in their implememtations, it is necessary to

assess the effect of the inhomogeneity of the ice crystal sizes and shapes within cirrus on

the radiative transfer calculations for generating the reflectance libraries. Our objective is to

understand the effect of vertical inhomogeneity in the structure of cirrus clouds on their

radiative properties. We employ fundamental scattering and radiative transfer theory to

investigate the bidirectional reflectance of cirrus clouds at MODIS 0.65 and 2.11 lxrn bands

using in situ crystal habit and size distribution for two typical cases of midlatitude cirrus

cloud systems.
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Section2 describesthedataandmodelsusedin this study.In Section3, we first

definethree-layerand singlehomogeneouscirrus models. We th_n derive the single-

scattering properties associated with the two cirrus models. In section 4, we present the

differences betweenbidirectional reflectances computed for the three-layer cirrus model and

its one-layer counterpart. Also presented in this section is the sensitivity study regarding the

shape effect of the small "quasi-spherically" nonspherical ice crystals on cloud reflectance.

Conclusions are given in section 5. Finally, in Appendix we present a numerically stable

radiative transfer model based on the adding/doubling principle expressed in a discrete form

for calculating reflected and transmitted intensities resulting from multiple scattering and

absorption of cirrus clouds.

2. Data and Models

a. Data

The size distributions and ice crystal habit information obtained from two cases of

replicator measurements carded out in Kansas during FIRE-II are used in this study. The

balloon-borne ice crystal replicators were launched at 1337 UTC on 25 November 1991 and

at 2045 UTC on 05 December 1991 and ascended at a rate of 4 m s _ while passing through

the cloud layers. Cloud top temperature on 25 November was -57°C and on 5 December

was -65°C, as measured by a radiosonde connected to the balloon package. The replicator

collects particles in a liquid plastic solution, which is coated on a moving, 35--mm-wide

transparent leader tape. The particles are preserved when the solvent in the solution

evaporates, giving detailed ice crystal impressions and size spectra of crystals down to 10

microns and below. The particles do not breakup upon impact on the replicator tape,

because of the slow rate of ascent of the balloon. The efficiency with which the replicator

collects small crystals has been quantified theoretically and experimentally [Miloshevich

and Heymsfield, 1997], and concentrations used in this study are adjusted to account for the

non-zero collection efficiencies of small particles. The ice crystals were sized throughout the



depthof thecloud,which,whentheir concentrationwasappropriatelyconsidered,led to 28

sizespectrain theverticalon November 25 and 33 spectra on December 5, each spectra

representing approximately 100 m in the vertical.

b. Single-Scattering Properties

Ice crystal sizes in cirrus clouds fall predominately within the applicable size

parameter regime of the geometric optics method at visible and near-infrared wavelengths.

Each ray can be localized on the wavefront of incident radiation (electromagnetic wave);

consequently, Snell's Law and Fresnel's formulas can be applied to trace the ray

propagation and the electric field magnitude as well as polarization configuration associated

with the ray. In the conventional geometric optics approach for deriving the scattering

properties of a particle, the scattered field in the radiation zone is regarded as the

superposition of diffracted rays and Fresnelian rays. The contribution due to ray diffraction

can be solved using the standard Fraunhofer theory whereas the contribution of Fresnelian

rays can be solved by a ray-tracing calculation. This approach suffers from several

shortcomings, as noted by Yang and Liou [1995]. In particular, it is assumed that the

extinction efficiency is 2 regardless of particle size.

To overcome the shortcomings of the conventional geometric optics, Yang and Liou

[1996] developed a geometric-optics-integral-equation approach (hereafter referred to as

GOM2). According to fundamental electrodynamics theory, the scattered far field can be

obtained if the tangential components of the electric and magnetic fields on the particle

surface are specified. In principle, GOM2 employs the ray tracing technique to solve the

near field on the particle surface and then map the near field to the far field via the following

_ e ikr k 2/_s (_) kr-->** -i----_ 4---__ X {ns ×/_(k" ) - _ × [ns X/_(_ )] }e -ik_'? dE?, (1)

s

rigorous relationship:



wherefis and? areunit vectorsalongthenormaldirectionsof particlefacesandscattering

direction,respectively,and k = 2zr/A. in which ;t is the wavelength of incident wave in

vacuum. It should be pointed out that the partition of the diffraction and Fresnelian

contributions to the far field is not required in GOM2. A simplified algorithm for GOM2 is

employed to reduce the computational cost.

To compute the extinction and scattering cross sections of ice crystals, we use the

ray tracing technique coupled with the following exact electrodynamic relationships:

(2a)

I_ol
V

where /_o is the electric field associated with incident wave, e = e r + ie i is the complex

permittivity, and the asterisk indicates the complex conjugate operation. The volume

integrals in Eqs.(2a) and (2b) are carried out along individual ray paths inside the particle

via a Monte Carlo/ray-by-ray algorithm [Yang and Liou, 1997] that is a generalization of

the well-known anomalous diffraction theory [van de Hulst, 1957].

Because of the complicated mechanisms involved in ice crystal growth, such as

sublimation, riming or aggregation of particles observed in anvils, the surfaces of ice

crystals may be rough. Roughened ice crystal surfaces were observed in laboratory

experiments [Cross, 1968] and also verified by recent in situ observations of tropic anvil

cirrus clouds [Heymsfield et al., to be available at http://box.mmm.ucar, ed_science/cirrus].

The scattering phase functions of roughened particles display less variation [Macke et al.,

1996; Yang and Liou, 1998] than their counterparts for ice crystals containing smooth

facets. As articulated by Mishchenko et al. [1996] on the basis of ground-based

nephelometer and aircraft radiance measurement of cirrus clouds [Foot, 1988; Francis,
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1995; Gayet, 1995; Posse andvon Hoyningen-Huene 1995], the scattering phase functions

of cirrus clouds can be rather featureless with no appreciable halos.

Based on these studies, we account for surface roughness specifically for ice crystal

aggregates in this study. In the numerical computation, the particle surface is regarded as a

number of small facets whose normal direction is tilted from that in the smooth case,

specified by local zenith and azimuth angles 0 and 9. The slope of a facet along two

orthogonal directions that are perpendicular to the local zenith direction, say x and y

directions, can be specified by

Zx OZ
= 0"-x-= (_t-2 - 1)1/2 costp

, (3a)

Zy = _Z
-_" = (_-2 _ 1)1/2 sin(p

, (3b)

where I.t=cos0. The derivatives in Eqs.(3a) and (3b) are confined to the facet. Since there is

no sufficient quantitative experimental information on the roughness of ice crystal surfaces

at present, we assume that irregular roughness of ice crystal surfaces is similar to that of a

wavy sea surface, which can be specified by the Gram-Charlie distribution [Cox and Munk,

1954]. If the tilt distribution of the roughness is azimuthally homogeneous (i.e.,

independent of angle q0), the statistical probability density function for the condition that the

slopes of a facet along the two axis directions are given by the first order Gram-Charlie, or a

2-D Gaussian distribution, as follows:

1 2 Z2)/02] (4)P(Zx,Zy) = -_-exp[-(Z x +

where t_ is a parameter determining the magnitude of roughness. It is noted that o'=0-0.005,

0.005-0.05, 0.05-0.3 correspond to slight, moderate, and deep roughness in the single-

scattering calculation, respectively. The technical details in accounting for the surface

roughness in the light scattering computation on the basis of geometric optics method have

been presented by Yang and Liou [ 1998].



c. Radiative Transfer Model

Radiative transfer calculations for cirrus are performed using the adding/doubling

method. The adding/doubling principle has been expressed mathematically in a matrix form

[Twomey, 1966; Hunt and Grant, 1966] and in an integral form [Hansen and Travis,

1974]. A concise formulation in a discrete form for the adding/doubling method is provided

in Appendix, where we also address some numerical concerns in the radiative transfer

computation such as the trtmcation of forward peak of the phase function and a stable

expansion of the phase function in terms of the re-normalized Legendre function. The

discrete expression of the adding/doubling principle is straightforward and efficient in

numerical realization. The present adding/doubling computational program has been

validated with respect to the various cases presented by LenobIe [1985] and also in

comparison with DISORT [Stamnes et al., 1988, 2000] for a number of canonical

problems.

3. Development of Cirrus Models

a. The Cirrus 3-Layer Model

The vertically inhomogenous nature of cirrus clouds was observed during the FIRE-

II program. Figures l a and l b show two different vertical profiles based on replicator

images of ice crystals in cirrus clouds collected on November 25 and December 5, 1991

[Heymsfield et al. http://box.mmm.ucar.edu/s¢ience/cirrus]. Three distinct regimes of ice

crystals are evident fi'om the replicator data. In the uppermost layer, small nonsphedcal

"quasi-spheres" are predominant. These particles are essentially nonsphcdcal shapes with

an aspect ratio approaching 1. The term "quasi-spherical" used in the analysis of observed

data and in many theoretical studies is often misleading because the optical properties of

spherical and nonspherical particles are significantly different even if the nonsphericity of

particle geometry is not substantial. The middle layer of cirrus is primarily composed of

pristine ice crystals with well-defined hexagonal shapes or bullet rosettes. The bottom layer
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contains larger but irregular ice crystals. Roughness can also be noted from the replicator

images of the irregular ice crystals. In both images, it becomes apparent that the particles

increase in size and the shapes become more complex from the top to the base of the cirrus.

The dominant habits of ice crystals and size distributions have been observed with a

fine vertical-resolution for the two cases shown in Fig.la and lb (28 and 33 layer data were

obtained in FIRE-II in situ observations for the November 25 and December 5 cases,

respectively). Based on these data, we constructed the percentages of the various ice crystal

habits and size distributions for the top, middle, and bottom layers of cirrus clouds. For a

given layer centered at z with thickness of zlz, the mean size distribution and percentage of a

specific habit are given by

1 fz+az/2
_(D,z) = _ Jz-Z,/2 n(D,z')de, (Sa)

_z+az/2 f_(D,e )n(D,e )de
- z-a,/2 , (Sb)

where D is the maximum dimension of ice crystals. The preceding averaging procedure is

also applied to obtain the mean size distribution and habit percentage for cirrus by assuming

a single size distribution to represent the cirrus cloud.

To illustrate the differences between the use of a 3-layer model and a single-layer

cirrus model, we first confine our discussion to the November 25 case. The thicknesses of

the top, middle, and bottom layers are 0.79, 0.73, and 1.18 krn, respectively. The size

distributions and crystal habit percentages for the three layers are shown in panels A-C of

Fig.2a. For the uppermost cirrus layer, "quasi-spherical" habits are dominant for the small

particle mode (D< 100 _trn), whereas bullet rosettes are dominant for the large particle mode

(D>100 _n). The middle layer is composed primarily of columns and bullets. In the bottom

layer, ice crystals are mainly irregular aggegates, but the edges seem to be rounded, perhaps
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dueto theeffectsof sublimation. The percentages of various ice crystal habits for the entire

cirrus layer with a thickness of 2.7 km are shown in the panel D of Fig.2a. It can be noted

that two geometries (sphere and hexagon) are used for the small ice crystals, as illustrated in

panels A and D of Fig.2a. The two particle morphologies are used for understanding the

sensitivity of the radiative properties of cirrus to these small ice crystals, which is of concern

in remote sensing and radiative transfer modeling. This is because these small ice crystals

are often misidentified as spheres in observations based on the particle images with blurred

edges. Even using an optical microscope, the shapes of small ice crystals are unlikely to be

seen dearly because of the poor instrumental resolving power caused by optical diffraction

phenomenon [Ohtake, 1970].

Shown in Fig2b are the size distributions and habit percentages for the case of

December 5. The thicknesses of the three layers (1.24, 1.12, and 1.17 km) in this case are

more uniform in comparison with the case of November 25. In addition, the former is

thicker. The December 5 case had a much colder cloud top and the crystal population was

more pristine, in that many columns and few polyerystals (rosettes) were observed. The

division of large and small modes for ice crystal habits is at 50 pan for the case of

December 5. It can be noted that for the small mode, "quasi-spherical" ice crystals are

dominant. There are substantially large numbers of "quasi-spherical" particles even for the

middle layer. According to Figs.2a and 2b, both size distributions and ice crystal habits vary

substantially with altitude. It should be pointed out that a three-layer or multiple-layer cirrus

model is realistic as a general rule, as is evident from replicator data shown and also from

the composite cirrus morphology based on radar observation [Mace et al., 1997]. In the

following discussions, we select the December 5 case to investigate the effect of vertical

inhomogeneity on single- and multiple-scattering properties of cirrus.

b. Radiative properties of cirrus layers

We employ the scattering computational model described in Section 2 to compute

the extinction cross sections, single-scattering albedos, and phase functions for ice crystals.
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Icecrystalsareassumedto beorientatedrandomlyin theatmosphere. First, to characterize

the bulk properties of size distribution, we define the mean maximum dimension for a given

size distribution as follows:

< D>= DfD_Dn(D)dD
(6)

where Omi n and Dmax are the cutoffs of size distribution at small and large sizes,

respectively. Foot [1988], Francis et aL [1994], Fu [1996], and Wyser and Yang [1998]

have found that with this definition for mean particle size, the details of the size distribution

are not important in specifying the bulk optical properties of cirrus. This feature has also

been observed in the case of water clouds composed of liquid droplets whose scattering

properties can be solved using Mie theory [Hansen and Travis, 1974; Hu and Stamnes,

1993]. Following these studies, we define the effective diameter De and effective radius re

for nonspherical ice crystals with a combination of various habits as follows:

(7)
DfD" ]_ Vi(D)fi(D)n(D)dD3 i

De=2re= 7 D_

_o. ]_Ai(D)fi(D)n(D)dD
i

where f/(D) is the percentage of a specific habit at size D. The summation is carried out for

all the ice crystal habits. We note that the preceding definition of effective radius reduces to

that defined by Hansen and Travis [1974] in the case of spherical particles, i.e.,

re =< r 3 > / < r 2 >. The mean extinction cross section, single-scattering albedo, and phase

function are given by
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DIDm'_'ae(D)P(O'D)fi(D)n(D)dDi
- = , (8a)

ae I;_ _ fi(D)n(D)dD
i

I;' _,as(D)P(O,D)fi(D)n(D)dD
-_= i

I;=_ _,Cre(D)fi(D)n(D)aD
i

(8b)

DID_" 2 as (D)P(O, D)f_(D)n(D)dD
P(o) = _ (8c)

I_ _, as(D)fi(D)n(D)dD
i

Figure 3 shows the bulk microphysical and optical properties for the size

distributions measured for the December 5 case. The upper row shows the geometric

configuration of the three layers of cirrus and the mean maximum dimension and effective

size of ice crystals in these layers. The second and third rows show the extinction

coefficient and single-scattering albedo. The lower two rows provide the asymmetry

parameter of the phase functions and the fraction of delta transmission [Takano and Liou,

198%] in scattered energy. Note that the delta-transmission is an artifact pertaining to the

ray-tracing technique, which can be circumvented by using a more accurate physical optics

approach [Mishchenko and Maeke, 1998]. In the present GOM2 calculation based on a

simplified algorithm [Yang and Liou, 1996], we do not account for the spreading of the rays

associated with delta-transmission for size parameter larger than 100. The use of either a

geometric optics method or a physical optics approach in dealing with delta transmission in

the single-scattering calculation for large size parameters does not make a significant

difference in the radiative transfer computation. The mean maximum dimension of the ice

crystals is 30 jam, 80 pm, and 132 gm for the top, middle, and lower cirrus layers,

respectively. The mean effective diameters are 47, 92, and 89 lma for the top, middle, and

bottom layers, respectively. The bottom layer has a smaller ratio of volume to projected area
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in comparison with the middle layer because of the porous structures of ice crystal

aggregates.

The optical properties of ice crystals are computed at two MODIS bands centered at

0.65 and 2.11 _tm. In the computation, the MODIS instrumental response functions at these

channels have been accounted for. At MODIS 0.65 and 2.11 _m bands, the maximum

extinction coefficient occurs in the middle layer because the number concentration of ice

crystals is highest for this layer. At the 2.11 lma band, the single-scattering albedo is higher

in the top layer than in the lower layers due to the prevalence of small crystals. At both two

bands, the asymmetry parameter is smaller in the top and bottom layers than in the middle

layer. In the top layer, the asymmetry parameter is reduced because the particles are smaller

and the forward peak of the phase function is weaker, while in the bottom layer, the reduced

asymmetry parameter is caused by the particle roughness. The vertical variability of delta

transmission is similar to that of the asymmetry parameter. In the top layer, delta-

transmission is substantially reduced due to the ray-spreading effect associated with small

size parameters [Yang and Liou, 1996]. In the bottom layer, the roughness of particle

surface also reduces the delta-transmission effect.

Figure 4 shows the phase functions associated with the single-scattering properties

shown in Fig. 3. At the 0.65 lain band, substantial differences between the phase functions

for the bottom layer and other layers can be noted at scattering angles near 120 °. The phase

function values for the bottom layer are much larger than those for the top and middle layers

in the scattering region between 5 ° and 20 ° . Evidently, the phase function values computed

by assuming that cirrus are homogeneous are significantly different from the phase

functions of the three layers in some specific scattering regions. At the 2.11 _tm band, the

forward peaks of the phase functions are smaller than at the 0.65 _xn band because the size

parameters are smaller. It can also be noted that the magnitude of the phase function in the

side scattering and backscattering regions are much lower at the 2.11 _tm band than at 0.65
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grn band. In addition,the differencesof the phasefunctions for different layers are

enhancedat the2.11gm bandbecausetheparticleabsorptionis stronglysensitiveto the

particlesizes.

4. Results

A. Comparison of reflectance feature for two cirrus models

We use the radiative transfer model described in Appendix to compute the bi-

directional reflectance to compare the radiative features of the three-layer and single-layer

cirrus models. To understand the physics in the comparison, one needs to interpret the

scattering geometry involving the sun and a satellite. For a given solar geometry specified

by (Os,q_s) and view geometry specified by (Ov,q_v), the corresponding scattering angle is

givenby

O = cos-a [_cos0scos0v+ sin0ssin0vcos (9)

where 0 = ¢P_- (P_ is the relative azimuth angle between sun and satellite. Note that 0s and

0_ are the inclination angles measured from zenith. Figure 5 illustrates the contours of

scattering angles versus solar- and view-zenith angles for four cases of azimuth angles. The

solar zenith and viewing zenith angles range between 0 ° and 60 °. It can be seen that the

scattering angles for the region of view-solar geometry considered in the present study are

essentially for side scattering and backscattering directions. The variational pattern of the

scattering angle versus solar-zenith and viewing-zenith angles depends on the relative

azimuth angle. A similar contour diagram of the scattering angle versus cos(O_) and

cos(O_) has been presented by Mishchenko et al. [1996].

Figure 6 shows the relative difference between the computed bidirectional

reflectances of the three-layer and one-layer cirrus models for optically thin cirrus (_ = 1) at

0.65 lain. The relative difference is defined as

15



e(Os,Ov, #2)= 1001173(0 s,Ov,o)- Ri(Os,Ov, _)1/Rl(Os, Ov, _)), (io)

where R3 and Rl are the bidirectional reflection functions computed using the three-layer

and one-layer cirrus models, respectively. The maximum difference in this case is about 5%.

When the optical thickness is small, the photons originating fi'om single scattering events

dominate the total radiance. The contribution of single-scattering events to the radiance in

the three-layer case is given by

3
1

__, [(oiArtPt(Os,Ov,#)], (11)
r(Os'Ov'#?) = 4c°sOs c°S0v l=1

where the summation is carried for all three layers of cirrus. Thus, for thin cirrus the

bidirectional reflectance function is linearly proportional to the phase function. Referring to

Figs. 3 and 5, the contours shown in Fig.6 can be explained as follows. For azimuth angles

of 0 ° and 60 °, the maximum difference is observed near scattering angles of 120 °, which

corresponds to the phase function difference at these scattering angles. For azimuth angles

of 120 ° and 180 ° , the maximum difference for the three-layer and one-layer results are

mainly noted near scattering angles of 155 ° and 180 °.

Figure 7 is similar to Fig.6, except that the optical thickness of the cloud is 10. The

contribution of multiple scattering increases with increasing optical thickness. The

differences occur at scattering angles between 90 ° and 120 ° , between 150 ° and 160 ° , and

between 170°-180 °. From Figs. 6 and 7, the difference between the three-layer and one-

layer models is within a few percent regardless of optical thickness. Based on these results,

modeling the cirrus as a single layer would seem to be sufficient at visible wavelengths.

Figures 8 and 9 are similar to Figs. 6 and 7, except that the calculations are

performed at the 2.11 _tm band. Absorption by ice at the 2.11 Ixm band is much higher than

at the 0.65 _rn band. It is noted that the reflectance for the three-layer model is always

larger than the one-layer model at the 2.11 _tm band. With the absorption of ice at the 2.11
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lamband,thetoplayerof cirrusdominatesthecontributionto thecloudreflectancebecause

photonsthatpenetrateinto the lowerlayersarelargelyabsorbed.Themeansizeof the ice

crystalsin the top layeris muchsmallerthanthat associatedwith the generalone-layer

cirrus model.With the increaseof opticalthickness,thedifferencebetweenthethree-layer

andone-layermodelsincreases.Foranopticalthicknessof 10,thedifferencescanreachup

to 50%.Becausethe2.11 lambandis usedfor theretrievalof themeansizeand optical

depthof cirrus cloud,it is expectedthat the vertical inhomogeneity may be important to

developing more realistic cirrus retrieval algorithms. In comparing Figs. 8 and 9, it may be

noted that the difference between the three-layer and one-layer models depends mainly on

the scattering angle when the cloud is optically thin. However, for optically thick cirrus, the

difference depends not only on scattering angle but also strongly on the viewing zenith and

solar zenith angles. This is because the radiance path varies with the solar and view angles.

For large solar zenith or viewing zenith angles, the ray path is large and the difference

between the three-layer and one-layer cirrus models, and their associated single-scattering

properties, becomes more significant.

B. Sensitivity of cirrus reflectance to shapes of "quasi-spherical" particles

As discussed in Section 3a regarding the replicator images of ice crystals, the small

so-called "quasi-spherical" ice crystals are essentially not spherical. Whether their

morphologies can be treated as spheres in light scattering and radiative transfer calculations

depends on the wavelength of radiation. At a far infi:ared wavelength, say, 15 _tm or larger,

the nonsphericity of these particles may not be significant in comparison with wavelength

because the size parameter becomes small. In this case, spherical and spheroidal geometries

have been used in light scattering computations [e.g., Sun and Shine, 1994; Takano et al.,

1992]. However, for the 0.65 and 2.11 _tm bands, the size parameter for a small particle, say

on the order of 20 tam, is approximately 100 and 30 at the band centers, respectively. For a

size parameter on these orders, the nonsphericity effect of a particle on its scattering

properties can be significant.
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To investigatethesensitivityof cirrus optical properties to the shapes assumed for

the small "quasi-spherical" ice crystals, in this study we compare the results associated

with spherical and hexagonal (with an aspect ratio of unity) assumption for the

morphologies of these particles. The "quasi-spherical" particles primarily affect the top

and middle layers and are largely absent in the bottom layer. The effective sizes for the top

and middle layers are 47.5 _tm and 93.0 pm if hexagonal shapes are used for the "quasi-

spherical" particles whereas the sizes are 52.2 pm and 94.6 pm if perfect spherical

geometry is assumed for these particles. Evidently, the assumption of shape for the "quasi-

spherical" ice crystals in cirrus clouds can lead to a change of effective size by as much as

5 p,m.

Table 1 lists the single-scattering properties of the top and middle layers. Substantial

differences are noted for delta transmissions at MODIS 0.65 Ira1 band because of the

absence of parallel faces in spheres. The asymmetry factor of the phase function is

substantially different at the 2.11 pan band, showing the dependence of the scattering

properties on the assumption of habits. The differences of the results for the two shapes are

larger for the top layer than for the middle layer because the former has a larger population

of "quasi-spherical" ice crystals.

Figure 10 shows the phase functions associated with the single-scattering properties

listed in Table 1. Substantial differences of the phase functions can be seen for the top layer

at both the 0.65 and 2.11 _ bands. The overall feature is that the spherical assumption

leads to larger phase function values for scattering angles between 10 ° and 45 ° and lower

values at side scattering angles. However, the spherical assumption leads to a pronounced

scattering maximum between 130 ° and 140 ° , which corresponds to the rainbow feature of

ice spheres. Additionally, the spherical assumption leads to larger phase function values

near 180 ° (backscattering) at the 2.11 grn band. In the middle layer, the differences caused

by the assumption of habit for the small particles are reduced due to the small number of the
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smallparticlesin thesizedistribution.Evidently,usingthemostrealisticparticleshapesfor

the smallparticlesin the top layer of cirrus will be crucial to obtainingreliablesingle-

scatteringpropertiesof thecloud.

Shownin Figs. 11and12arethedifferenceof bidirectionalreflectancescomputed

usingnonsphericalhexagonalandsphericalgeometriesin thethree-layerfor thin (r =1) and

thick ('t = 10) cirrus at the 2.11 pm band. The differences shown in Figs. 11 and 12 are

defined as

e(Os,Ov,_?)= lO0[Rsph(Os,Ov,_)- Rhex(Os,Ov,(_)]/ Rhex(Os,Ov,_)), (12)

where Rsph and Rhe x indicate the reflection functions associated with spherical and

hexagonal shapes, respectively, which are assumed for the small "quasi-spherical" ice

crystals. The maximum differences shown in Fig. 11, which correspond to scattering angles

between 130 ° and 140 ° , are caused by the rainbow feature of ice spheres. It can also be

noted that the assumption of ice spheres leads to an overestimation of reflecctance near 180 °

(backscattering). As optical thickness increases, the contrast decreases for the rainbow

feature. However, the enhanced backscattering for the assumption of spheres is still

noticeable. For optically thick cirrus, Fig. 12 shows that the assumption of sphere for the

"quasi-spherical" particles leads to an underestimation of cloud reflection at the 2.11 pm

band except for scattering angles near 180 °.

Figures 13 and 14 are similar to Figs. 11 and 12, except that the formers are for the

0.65 lam band. Again, we see pronounced differences between the results associated with

the hexagonal and spherical assumptions for the small ice crystals in the uppermost layer.

The positive maximum near the backscattering peak noted in Figure 11, however, is not

observed in the results shown in Figure 13 because the phase function value for the spheres

is less than that of the hexagons at the 0.65 pm band. Additionally at the 0.65 jam band, a

distinct rainbow feature can be noted in the case of thin cirrus. For the optically thick cirrus,

the rainbow is blurred due to multiple scattering events occurring within the clouds. Figures
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11through14 illustratethatthe shapeeffect of the small ice crystals at the top layer of

cirrus is significant at both visible and near infxared wavelengths.

5. Conclusions

In this study, we have defined a three-layer cirrus model in terms of ice crystal habit

and size distribution based on in-situ replicator data acquired during the NASA FIRE-II

field observation program. We have described a fundamental scattering model and a

numerically stable radiative transfer model for the computation of the single-scattering

properties of various ice crystals and the bidirectional reflection of cirrus clouds.

We have found that the effect of vertically inhomogeneity within cirrus is not

significant at MODIS 0.65 _am band, a wavelength for which the absorption of ice is

negligible. However, in comparison with the one-layer cirrus model, a vertically

inhomogeneous cirrus cloud produces substantially larger reflectance at the 2.11 Ima band, a

wavelength for which absorption by ice is important. The increase in reflectance occurs

because the mean size of ice crystals in the top layer in the three-layer model is smaller than

in the case of the one-layer model and the total reflected radiance is dominated by the

contribution from the top layer. For a given optical thickness, the reflectance increases with

decreasing particle size.

We also investigated the sensitivity of reflection of cirrus clouds to the particle

shapes of the "quasi-spherical" ice crystals that have been of Len assumed to be spheres.

Numerical results have demonstrated that the bidirectional reflection function of cirrus is

very sensitive to the shape of these particles at both visible and near-infi:ared wavelengths.
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Appendix : A Discrete Expression of Adding/Doubling Principle

The adding/doubling method is one of most robust approaches to solve the radiative

transfer equation for multiple scattering events. The standard mathematical expression of

this method involves various tedious angular integrals although it can be written

symbolically in a very simple form. In this section we present a discrete form of the method

by introducing a direct transmitting function. As an improvement over previous

mathematical expressions from a practical viewpoint, the discrete adding/doubling equations

are straightforward and more efficient in numerical implementation. In addition, the discrete

form of the adding/doubling method is more suitable for addressing some numerical

concerns, such as the numerical singularity of adding/doubling calculation and the

performances of various quadrature schemes.

To economize computational cost and memory requirements, we apply a Fourier

expansion over the azimuth angle for radiance and bidirectional reflection and transmission

functions:

M

Ii'r't (-T-].l, q)) = Z Ii'r't(m) (T-#)cosm_O, (Ala)

m=O
M

r(#,q_,ll' ,q¢ ) = Z r(m)(la, ll ' ) cos m(¢# - q¢ ), (Alb)

m=0
M

t(l.t,_O,l.t' ,_o' ) = _ut(m)(I.t,l.t ' ) cos m(_0 - _ ). (Ale)

m=0

where superscripts i, r, and t indicate incident, reflected, and transmitted intensities,

respectively; and Ix and Ix' are positive with allowable values in [0,1]. The maximum

number of Fourier terms (M) required for the convergent solutions of Eqs.(Ala)-(Alc)

depends on the incoming and outgoing radiation beams as well as the magnitude of the

asymmetry of the phase function. For example, only the first term is necessary for a solar

zenith angle of 0 ° (overhead Sun) whereas more than 100 terms may be required for a low

solar elevation angle (Sun near the horizon). For solar zenith and viewing zenith angles
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smallerthan60°, 30 to 40 termsarenormallyrequiredin the caseof cirrus cloudsif the

strongforwardpeakof thephasefunctionis truncated.A comprehensivestudyregarding

thenumberof thetermsrequiredin theFourierserieshasbeencarriedoutby King [1983]

using Henyey-Greenstein function and the phase function for a fair weather cumulus.

According to the definitions of reflection and transmission functions [Hansen and

Travis, 1974], it can be proven that the Fourier components of reflected and transmitted

intensities are given by

= (1 + 8mO)_ir(m)(it, it' )IiCm)(-]_ )it' dit', (A2a)Ir(m)(_)

lt(m)(it) = (1 + 8m0 ) (m)(it, itt )_ri(m)(_it, )it, dit', (A2b)

where 8m0 is Kronecker delta function. It should be pointed out that the radiances defined

in Eqs.(A2a) and (A2b) are diffusive intensities, i.e., they originate from the scattering of

incident radiation by the particles in the scattering layer. If the total (direct + diffuse)

transmitted intensity, indicated as "It(-I.t,(P), is defined in the same manner as in the

diffusive case, it follows that

= (1 + 8mO)_i_(m)(it, itt )Ii(m)(-it ' )It'd# '

I2,= (1 + 8,,,o) t(")(it, it ') + zl(")(it, it ' )]i_(,0(_it,)it, dit', (A3a)

where ?(,,0(it,/_,) is the ruth Fourier component of the total transmission function.

A(m)(g,I.L') is associated with the transmission of incident radiation and given by

A(,n) (it, it, ) = 1 exp(-z/#')8(it -it'), (A3b)
(1+8.,0)it'

in which _i(g-g') is the Dirac delta function. Evidently, the quantities defined in

Eqs.(A2a)-(A3b) are continuous functions of the arguments g and g' that range
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continuouslyin theinterval[0,1]. Weselectasetof discretepointsin theregion[0,1] for _t

and_t',thatis,thetwo variablescanonly havethevaluesof [fll,_2,'"fln] • With respect to

the discrete set, we define the following discrete quantifies with single subscript and double

subscripts:

lj,t(m) -- [i,t(m)(__._ ), !;(m)

r_ m) = r(m)(_tj,]Ak),

7k(7)= 7(_)(_j,uk),

= f(m)(#j), (A4a)

t_ ) = t(m)(!Uj, Uk ) (A4b)

_k7) = A(m)(#j,_tD. (A4c)

Since the continuous region [0,1] is discretized by using a set of points, it is required that an

integration of a function f(_t) with respect to its argument defined in [0,1] be replaced by a

discrete summation in the form of

1 n

i=1

where _ are the weights in the summation. For an integral involving the Dirac delta

function, the definition of the delta function and Eq.(A5) lead to the following relationship:

fl Fli)d# nf(#A = f(_)a(_t- _ S" w..z__f(uj)_a(_j (i6)I

j=l

Evidently, to guarantee the equality in Eq.(A6) in the discrete procedure, the Dirac delta

function should be replaced by Kronecker symbol in the form of

_(I.tj_lli)__)Sji/Wj__I/Wj for j=i (AT)
to for j_i "

Thus, the direct transmission function in discrete form is given by

A_) (z) = 1
(1 +amo)Wj#j exp(-z/Uj)aq . (AS)
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Forthediscretequantitiesdefinedwith respectto thesetof discretepoints[ Ix1,Ix2,'"ixn ], we

introduce a mathematical operator ® defined by

n

A(m) ® _jk_(m)-(1 * SmO)_._ A_.m)_n)pj Wj,

j=l

n

m) (m)
C_j m) ® *'jkD(m)=(1 +_m0)E C_j B)k ]AjWj.

j=l

(A9a)

(A9b)

The operator ® is similar to an ordinary matrix multiplication except that a weight is

included in the former. Thus, for one homogeneous layer, the reflected, diffusely

transmitted, and total transmitted radiances are related to the incident radiation via the

following relationships:

I_(m) = I)(m) ® rS_n), Ikt(m) = I_ (m) ® t)_) . (AIO)Itk (m) = Ij (m) _ t (m)_" jk _

One of the interesting features of using the operator ® is the variation of subscripts in the

expressions in Eq.(A10): the incident beam denoted by subscript j is re-directed to the

direction denoted by subscript k after interacting with the scattering layer. Similarly, for two

layers indicated by superscripts a and b, we have the following relationships:

(Alia)

and

i_c(m) = ij(m) ® trj_(m) +_;(m) ® U_lm) ® _n_*(m)],

7b(m) + "{jat(m)® D_nm)® 7b(mh (A1 lb)_k'_t(m) _. ij(m) ® [_'j_(m) ®'lk _nk 1,

where the asterisk indicates that the transmission function corresponds to the case of

illumination coming from below. The quantities D and U in Eqs.(A1 la) and (A1 lb) are

(A12a)

given by

N

n=l

,.b(m)
U_i3m) "- lib(m) at"D([ n) ® "0 '
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n('m)'(n+l) = n(ilm)'(n) _ n(m)'(1)U ' D/(Jm)'(1) - rib(m) _ _*(m). (il2b)

According to the sensitivity study byHansen and Travis [1974], we use N=12, 5, and 3 in

the summation involved in the first expression in Eq.(A13a) for m<10, 10<m<100, and

m>100, respectively. The remaining terms are approximated by a geometric series. The

physics of the adding/doubling principle can be viewed dearly in terms of the variations of

the subscripts from left to right in the fight-hand sides of Eqs.(A1 la) and (A1 lb). The

reflection and transmission functions for the combined layer are given by

~ _ ".a*(m)
J_jkl_(m)- rfk (m) + [jal(m) (_ U_lnm) _" ink , (A13a)

and

~ ~ 7b(m) + _jal(m) + D_nm) _ 7 b(m) (A13b)

The transmission function given in Eq. (A13b) contains the contribution due to direct

transmission, which is implicitly in the form of a delta function, and it may potentially cause

inaccuracy in numerical computation. Thus, it is necessary to separate the diffusive and

direct components in Eq.(A13b). It is noted that

"_ja(m) t¢2_7b(m)
, ='lk :[t; (m) + A(j_)(_a)]®[tb(m) + A_kn)(_'b)] :

t_.l<m)®tb(m> +exp(-_a/l_j)t)_m) +t;(m>exp(-'Cb/Uk)+ Z_jn_)('Ca+ _b). (A14)

Thus, the diffusive transmission function for the combined layer is given by

_n) = t_(rn) ® tb(m)

7b(,,O (A15)+t; (m) exp(-rb/ l-tk)+exp(-'Ca / #j)t)_ m) +'{_l (m) ® D}nm>®'nk "

Eqs. (A12a), (A12b), (A13a) and (A15) constitute the adding/doubling equations. It should

be pointed that the maWix associated with direct transmission is diagonal. In numerical

computation, the numerical efficiency and accuracy can be improved substantially if the
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multiplicationof the direct transmissionfunction with mother quantity is evaluated

analytically,suchas

A_)('t')® A(_)= exp(-'r//2j)A)_ ), A)_)® d_)(_') = _jka(m)exp(_,r//.tk). (A16)

As mentioned in preceding discussions, the continuous integration involved in

adding/doubling calculation must be replaced by a proper quadrature scheme.

Mathematically, we need to select proper pairs of (l.ti,Wi) for the definition of the

mathematical operator ® in Eqs. (A9a) and (A9b). The most popular quadrature schemes

are Gauss, Lobatto, and Radau quadrature schemes [Press et aL, 1986; Hildebrand, 1974].

For the angular region involved, these three schemes cover _t (or _t') _ (0,1), [0,1], and

(0,1], respectively. That is, Gaussian quadrature is open at both ends, Labotto quadrature is

closed at both 0 and 1, and the Radau scheme is open at 0 but closed at 1. The radiance data

at nadir view is usually required in retrieval applications. Thus, an extrapolation must be

used to obtain the ndalr-view radiance if Gaussian quadrature is used. Although the Labotto

scheme is closed at both ends of the integral region, the information at _t=0 actually does

not make any contribution to the angular integration, as evident from Eqs.(A9a) and (Agb).

In addition, including _t=0 will cause a singularity in the initialization of the adding/doubling

calculation. Therefore, we use the Radau scheme in the present study.

To initialize the adding/doubling process, we start with a very thin homogeneous

layer with optical depth A'r (- 10-8). The reflection and transmission truncation for this

layer can be obtained on the basis of the invariance principle [Hansen and Travis, 1974] as

follows:

ti!]) - 4#il.t j 2 #illj

-_ (_92A'f2 t _ _J - "_aJ[(Pir(m)//'tk)®(Pt!m)//'tk)+(I_t`(m)//'tk)®(P_(m)/lzk)]' (A17a)
3212i1.tj

26



t},_?)- &Az [1 Av _ + l.tj]p.t(.m)41.1il.1j 2 blit.lj J'J

In Eqs.(A17a) and (A17b), Pi_(m) and Pi_(m) are defined as follows

M M

e/;(m) _ Z ( 2 _ _)m O ) (Ol _lm ( _ u i ) _llm ( _ j ) = 2 ( 2 _ _)m O ) (l} l _llm ( _ i ) _lm (_ ]l j ) ,

l=m l=m

M

* ijp't(m) = Z (2 _ _mO)(Ol_lm(_i)_l (_j),

l=m

in which cbI is given by

&t 212111- -l P(P)Pt(P)dP

= 2l+1 fl
2 Jo [P(l't)+(-1)tP(-bl)]Pt(l't)dl't'

(A17b)

(A18a)

(A18b)

(A19)

where P(g) is phase function and Pt(P) is the Legendre polynomial of/th order. In

numerical computation, we use the Radau quadrature scheme for the integration in

Eq.(A19). Thus phase function information at the exact forward and backward directions is

accounted for. The function _m in Eqs.(A18a) and (A18b) are the "re-normalized" ( or the

"normalized" called in DISORT [Stamnes et al. 2000]) associated Legendre polynomials

first introduced by Dave and Armstrong [1970], defined as

P/m (ILl,) - l_P/m '].1,),
(A20a)

where p_ is the ordinary Legendre function. The normalized associated Legendre functions

can be calculated on the basis of the following recurrence relationship:
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2l + 1 l_t (l.t) - _ (I + m)(l - m)4(t + m + 1)(l- m + 1) (t + m + 1)(l- m + 1) _-ml(ft)'
(A21a)

with the two initial values for the preceding recurrence given by

/Smm(_t)=(-1]m ](2m-1-)!!(1-_t2)m/2 /Sm+l(ft)=U 2m_--_-+T/_m(/.t ). (A21b)
" " _ (2m)!!

Note that alternatives for initializing the preceding recurrence can be found in the paper by

Dave and Armstrong [ 1970] and a technical report for DISORT [Stamnes et al. 2000]. It

should be pointed out that in many references the phase function expansion based on

Legendre polynomials is given in the form of

M

p(m) (_i, lLtj ) = Z (2 - 8mO)_l
(l- m)[

(l + m)[ Ptm(l'ti)_l (l'tJ)'
(A22a)

l=m

where the associated Legendre polynomial or Legendre functions can be calculated on the

basis of the following recursive relationship

pt+l(_t) = (2l + 1)_rnt (_) - (! + m)pt_ml (I.t) (A22b)
l-m+l

The factor (l-m)!/(l+m)! in Eq.(A22a) rapidly reduces to zero while the values of

Legendre functions are very large for a large m with l > m, as noted by Dave and

Armstrong [1970]. For this reason, the preceding approach given by Eqs.(A22a) and

(A22b) for the expansion of the phase function in radiative transfer simulations is not

numerically stable, in particular, when the asymmetry of phase function is substantial and

higher order Legendre functions are required in the phase function expansion.

Since the predominant sizes of ice crystals in cirrus clouds are much larger than

visible and near infrared wavelengths, there is a strong forward peak in the corresponding

phase function. To include this forward peak in numerical computations, thousands of terms

may be required in the Fourier expansions involved in Eqs.(Ala)-(Alc) for a general solar-
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viewgeometry,andalsoin thephasefunctionexpansiongivenby Eqs.(A18a)and(A18b).

It shouldbe pointedthat the numberof radiancestreamsusedin the adding/doubling

calculationneedsto increasewith the increaseof the termsused in the phase function

expansion so that the orthogonality of the selected finite set of Legendre functions in a

discrete form can be guaranteed. Thus, the strong forward peak makes the numerical

computation impractical. For this reason, the strong forward peaks of phase functions are

Inmcated in practice. The schemes used for the truncation are diverse, which have been

evaluated in an extensive discussion by Wiscombe, [1977], who has further developed the

_5- M method in order to avoid the shortcomings pertaining to various ad hoe empirical

approaches. For trtmcating the forward peak of the phase function involved in this study, we

employ the method developed by Hu et aL [2000], which is an extension of the 15- M

method. Atter the phase function is Iruncated, the single-scattering properties need to be

adjusted on the basis of the similarity principle [Wiscombe, 1977; van de Hulst, 1980;

Takano and Liou, 1989b]. For example, optical depth and single scattering albedo are

adjusted as follows:

x' = (1-f_)x, _' = (1- f)_/(1- f_), (A23)

where f is the fraction of energy associated with the truncated forward peak.
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Figure Captions

Figure 1a. Replicator images of ice crystals from a cirrus cloud observed on Nov. 25, 1991

during the FIRE-II field experiment. Note the three-layer structure with small

quasi-spherical crystals in the top layer, and columns and bullet rosettes in the

second layer. The third layer is composed mostly of large aggregated crystals.

Figure lb. Same as Figure la, except that the observation was made on Dec. 5, 1991 and the

top layer is dominated by pristine columns.

Figure 2a. Size distribution modeling the cirrus observed on Nov. 25, 1991 that is shown in

Figure la. Panels A, B, and C show the size and habit distributions for the top,

middle, and bottom layer, respectively. Panel D shows the mean size distribution

averaged over height.

Figure 2b. Same as Figure 2a except for the case of Dec.5, 1991.

Figure 3. The mean size and single-scattering properties for the three-layer (Dec. 5, FIRE-

II) cirrus model. The vertical lines indicate the results computed using the one-layer

model mean size distribution (i.e., the cloud is assumed to be vertically

homogeneous).

Figure 4. Phase function corresponding to the single-scattering properties shown in Figure

3.

Figure 5. The scattering angle versus solar zenith and view zenith angles for four azimuthal

angles. Note that the scattering angles are essentially for side-scattering and

backscattering directions.

Figure 6. The percent relative difference of bidirectional reflectance computed using the

three- and one-layer models at MODIS 0.65 grn band for thin cirrus (x=l). The

maximum difference for this case is about 5% and depends mainly on scattering

angle.

Figure 7. Same as Figure 6 except for thick cirrus (I:=10).
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Figure8. SameasFigure6exceptfor MODIS 2.11 pm band. Note the relative difference

is much higher (up to 12%) than at 0.65 lma wavelength due to absorption by ice.

Figure 9. Same as Figure 7 except for MODIS 2.11 lma band. The differences for large

optical thickness reach up to 50% and depend also on viewing and solar zenith

angles.

Figure 10. Comparison of the top and middle layer phase functions computed by assuming

that the small "quasi-spherical" ice crystals are either spheres or non-spherical

hexagons with an aspect ratio of unity. Note the presence of the ice sphere rainbow

feature between 130 ° and 140 ° .

Figure 11. The percent relative difference of the bidirectional reflectances computed

assuming spherical and hexagonal shapes for the small "quasi-spherical" ice

crystals. The difference contours shown are for thin cirrus (x=l) at MODIS 2.11

part band. Note the large differences at the ice rainbow and backscattering angles.

Figure 12. Same as Figure 11 except for thick cirrus (x=10). Note the smoothing of the

rainbow maximum.

Figure 13. Same as Figure 11 except for MODIS 0.65 lam band. Note the absence of the

positive backscattering angle maximum.

Figure 14. Same as Figure 13 except for thick cirrus (x= 10).
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Table 1. The single scatteringproperties of the top and middle layers, which are

computed in conjunction with two assumptions for the shapes of the "quasi-

spherical" small ice crystals ( ice spheres and hexagons with aspect ratio of 1).

Note that the shapes of ice crystals with size larger than 50 lam are assumed to

be unchanged.

_,=0.65 I_m _,=2.11 I_m

Spheres for Hexagons for Spheres for Hexagons for

"quasi- "quasi- "quasi- "quasi-

spherical" spherical" spherical" spherical"

particles particles particles particles

fle(1/km) 0.32207 0.36926 0.33092 0.36005

0.99999 0.99999 0.91208 0.91335

g 0.83271 0.77965 0.86188 0.80258

j_ 0.070293 0.11689 0.038339 0.035189

Middle layer

_e(1/km) 0.41679 0.42553 0.41837 0.42446

0.99998 0.99998 0.85099 0.85187

g 0.81627 0.80842 0.87949 0.86934

j_ 0.12765 0.13488 0.087641 0.086295
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